

(DM1) PC-ABS - Shaving Machine Cover

Jani Pelto Senior Scientist at VTT jani.pelto@vtt.fi

CDM1) PC-ABS -Shaving Machine Cover

Responsible Compound Formulation	Processing Small Scale	Demo pilot scale	Target/Final TRL	Demonstrator	Material Concept	Application	PCR Origin/ Recycling /Purification
VTT	AIMPLAS (1K IM) (2K IM)	NORNER (1K IM)	6/?	Shaving Machine Cover	 CE friendly materials Monomaterial multicomponent Demonstration of Circularity of PC/ABS enabled by CREASOLV Design from /for Recycling 	Target: E&E Appliances Also for: Automotive	Main Origin: PC WEEE / SR/ CREASOLV Alternative: ABS WEEE / SR/ CREASOLV

Figure 1.1 Target Demonstrator. Pictures from H2020-POLYCE (for illustration)

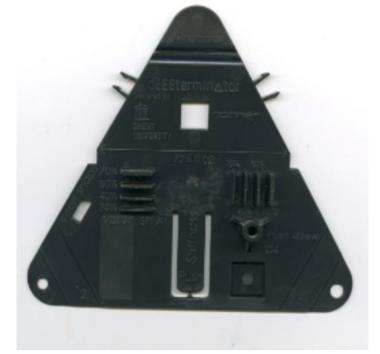
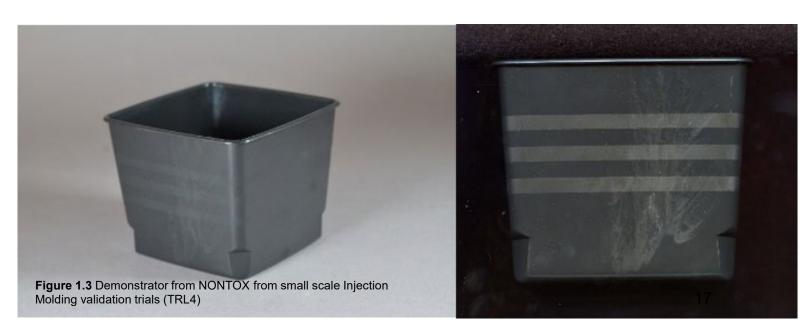


Figure 1.2 Demonstrator from NONTOX from small scale Injection Molding validation trials (TRL4)

- NONTEX
- The below example are from r-PC/ABS (60/40%) blends from 2-5 kg scale experiments, containing 38% virgin ABS, and 5% compatibilizer (B or C) and in one case chain extender
- Impact strength has been significantly upgraded by the proper choice of compatibilizer
- PC from Creasolv® from two different batches C2 and C3 with some variation between batches in their melt viscosity and $\rm M_{\rm w}$
- Chain extender has a large effect on the melt viscosity, but not on the impact strength (which for r-PC is in the range of < 7 kJ/m²)

	Recycled PC / Virgin ABS (60/40%) Creasolv® batch/ Compatibilizer (B or C, chain extender)	Charpy Notched impact @RT (kJ/m²)	E-modulus / tensile strength at break @RT (MPa)		Glass temp. T _g ABS ⁴ / PC ⁵ (CELS)		MFI +260°C /2.16 kg (g/10 min)
Ref_u	PC Creasolv®2-(Add³) no compatibizer	14.4	2378	51.4	104	146	12.5
S2_u_C2	PC Creasolv®2- Comp B (rigid)	22.5	2427	52.9	105	148	7.0
S5_u_C2	PC Creasolv®2- Comp B - chain extended	23.4	2423	55.6	105	148	1.6
S3_u_C2	PC Creasolv®2 - Comp C (elastic)	21.9	2103	46.2	103	147	3.8
S2_u_C3	PC Creasolv®3- Comp B	36.2	2433	53.5	107	150	3.9

PC-ABS-Material Upgrading



Polycarbonate derived from bromine contaminated mixed plastics by Creasolv® can be upgraded into a good performance PC/ABS 60/40% blend

- Good processability by injection molding, except for the marks that imply degradation (under study) (Figure 1.3 below)
- Appropriate thermomechanical properties comparable to virgin PC/ABS
- Satisfactory impact properties (OEMs: Charpy notched >20 kJ/m2 @RT) in compatibilized blends having 57.5% recycled content, and a practically attractive >15 kJ/m2 can be reached even at much higher recycled content >75%
- Black color, limited gloss but good contrast between matt and glossy areas

Remaining challenges

- Stability of the M_w of PC polymer after the Creasolv® process (→ batch-to-batch variations)
- Upscaling to larger >30 kg scaleenabling TLR 6 demo
- Drying or VOC removal from recycled PC or PC/ABS, or recycled plastics in general

